Barisan dan Deret Aritmetika

Barisan bilangan merupakan urutan bilangan yang dibuat dengan aturan tertentu. Barisan aritmetika merupakan suatu barisan bilangan yang setiap pasangan suku-suku yang berurutan memiliki selisih yang sama. Contoh dari barisan aritmetika adalah sebagai berikut.

7, 10, 13, 16, 19, …

Perhatikan bahwa setiap pasangan berurutan pada barisan tersebut memiliki selisih yang sama, yaitu 10 – 7 = 13 – 10 = 16 – 13 = 19 – 16 = 3. Selisih bilangan-bilangan berurutan pada barisan aritmetika disebut beda, dan biasanya disimbolkan dengan b. Sedangkan bilangan-bilangan yang menyusun barisan disebut suku. Suku ke-n dari suatu barisan disimbolkan dengan Un. Sehingga U5 merupakan simbol dari suku ke-5. Khusus untuk suku pertama dari suatu barisan, disimbolkan dengan a.

Suku ke-n Barisan Aritmetika

Pasangan suku-suku berurutan pada barisan aritmetika memiliki beda yang sama, sehingga:

U2 = a + b
U3 = U2 + b = (a + b) + b = a + 2b
U4 = U3 + b = (a + 2b) + b = a + 3b
U5 = U4 + b = (a + 3b) + b = a + 4b

Dari pola di atas, dapatkah ditentukan suku ke-7, suku ke-23, dan suku ke-50? Dengan menggunakan pola di atas, dapat diketahui dengan mudah suku ke-7, suku ke-23, dan suku ke-50 dari barisan tersebut.

U7 = a + 6b
U23 = a + 22b
U50 = a + 49b

Sehingga suku ke-n dari barisan aritmetika dapat ditentukan dengan menggunakan rumus berikut:

Un = a + (n – 1)b, untuk n bilangan asli

Deret Aritmetika

Deret aritmetika merupakan penjumlahan dari semua anggota barisan aritmetika secara berurutan. Berikut ini merupakan salah satu contoh dari deret aritmetika.

7 + 10 + 13 + 16 + 19 + …

Bagaimana cara menentukan hasil dari deret aritmetika, jika diambil n suku pertama? Misalkan akan dijumlahkan 5 suku pertama dari barisan 7, 10, 13, 16, 19, …

7 + 10 + 13 + 16 + 19 = 65

Bagaimana jika yang akan ditentukan adalah jumlah dari 100 suku pertama? Tentunya kita akan kesulitan untuk menghitungnya satu persatu. Berikut ini adalah cara menentukan jumlah dari 5 suku pertama barisan aritmetika di atas tetapi dengan cara yang berbeda.

Misalkan S5 = 7 + 10 + 13 + 16 + 19, maka
Deret Aritmetika

Sehingga nilai S5, jumlah 5 suku pertama dari barisan tersebut, adalah 26 × 5 : 2 = 65.

Perhatikan bahwa S5 di atas dapat dicari dengan mengalikan hasil penjumlahan suku pertama dan suku ke-5, dengan banyaknya suku pada barisan, kemudian dibagi dengan 2. Analogi dengan hasil ini, jumlah n suku pertama dari suatu barisan dapat dicari dengan rumus berikut:

Sn = (a + Un) × n : 2

Karena Un = a + (n – 1)b, maka rumus di atas menjadi,

Sn = (2a + (n – 1)b) × n : 2

Semoga bermanfaat, yos3prens.

Tentang yos3prens

Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran.
Pos ini dipublikasikan di Aljabar, Kelas IX, Perangkat Pembelajaran, Topik Matematika dan tag , , , . Tandai permalink.

205 Balasan ke Barisan dan Deret Aritmetika

  1. William berkata:

    Kalau seperti ini bagaimana?
    ada barisan aritmatika 200, 600, 1200, 2000, …
    tentukan u10?

    Suka

  2. Adi Hermawan berkata:

    kalo soalnya begini bagaimana. selama 24 bulan tabungan budi menjadi 3 juta. tapi budi tidak tahu brp tabungan awalnya. yang diketahui cuman dia nabungnya berderet klipatan trus sampai selama 24 bulan jadi 3 juta. pertanyaannya adalah brp tabungan awal budi?

    Suka

  3. mayaa berkata:

    Masih bingung

    Suka

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s