Simpangan Baku

Simpangan baku adalah ukuran penyebaran nilai-nilai terhadap rata-ratanya.

Data tidak bisa berbicara dengan sendirinya. Kita harus mengorganisasi data tersebut agar orang lain dapat memahaminya dengan mudah dan cepat. Beberapa jenis diagram sering digunakan untuk menyajikan data, misalnya diagram batang, diagram lingkaran, dan histogram. Statistik seperti rata-rata, median, dan modus juga mungkin sudah familiar ketika kita ingin merangkum data. Ketiga statistik tersebut bisa meringkas sebaran suatu data menjadi satu nilai yang mudah kita pahami. Apakah dengan rata-rata, median, atau modus sudah cukup bagi kita untuk bisa memahami data? Untuk menjawab pertanyaan ini, mari kita perhatikan ilustrasi cerita berikut.

Bayangkan Anda sekarang sedang lapar, sehingga Anda berusaha untuk mencari restoran di sekitar Anda. Setelah mencari-cari, Anda menemukan dua restoran beserta dengan rata-rata waktu tunggunya. Dua restoran tersebut memiliki rata-rata waktu tunggu yang hampir sama. Restoran pertama rata-rata waktu tunggunya 14,04 menit sedangkan restoran kedua memiliki rata-rata waktu tunggu 14,02 menit. Apakah hanya dengan menggunakan nilai rata-rata ini Anda bisa menilai layanan kedua restoran tersebut? Karena kedua nilai rata-rata tersebut hampir sama, maka kita tidak bisa menggunakannya sebagai satu-satunya alat ukur layanan restoran. Kita membutuhkan suatu nilai yang bisa mengukur seberapa beragam sebaran waktu tunggu kedua restoran tersebut. Salah satu nilai yang bisa digunakan untuk mengukur hal ini adalah simpangan baku.

Sebaran Waktu Tunggu

Sekarang bandingkan bentuk sebaran pada dua gambar di atas. Kita dapat memperhatikan bahwa sebaran waktu tunggu restoran kedua lebih datar daripada restoran pertama. Hal ini dikarenakan waktu tunggu restoran kedua lebih menyebar atau beragam daripada restoran pertama. Dengan kata lain, restoran kedua lebih banyak memiliki nilai dalam interval bawah dan atas, serta lebih sedikit memiliki nilai dalam interval tengah. Sebaliknya, restoran pertama lebih konsisten dalam hal waktu tunggu. Waktu tunggu restoran ini lebih mengerucut di sekitar nilai rata-ratanya. Meskipun kedua restoran tersebut memiliki nilai rata-rata waktu tunggu yang hampir sama, akan tetapi penyebaran datanya sangatlah berbeda. Dengan mengetahui hal ini, resoran mana yang akan Anda pilih?

Jika Anda adalah tipe orang yang menginginkan kepastian, tentu saja Anda akan memilih restoran pertama karena variasi waktu tunggunya tidaklah besar.

Salah satu ukuran yang biasa digunakan untuk mengukur variasi dari suatu data adalah simpangan baku. Pada pembahasan berikutnya kita akan berlatih bagaimana menentukan nilai simpangan baku untuk sampel dan populasi.

Bagaimana cara menghitung simpangan baku dari suatu sampel?

Untuk menentukan nilai simpangan baku dari suatu sampel, lakukan langkah-langkah berikut.

  1. Hitunglah rata-rata semua nilai sampel.
  2. Kurangi masing-masing nilai sampel dengan rata-rata. Langkah ini akan menghasilkan daftar simpangan semua nilai terhadap rata-ratanya.
  3. Kuadratkan masing-masing simpangan yang diperoleh pada langkah kedua.
  4. Jumlahkan semua nilai kuadrat yang telah diperoleh pada langkah ketiga.
  5. Bagilah jumlah pada langkah keempat dengan n – 1, yaitu 1 kurangnya dari banyaknya nilai-nilai dalam sampel.
  6. Carilah akar kuadrat dari hasil yang didapatkan pada langkah kelima. Di sini kita sudah mendapatkan simpangan baku.

Secara ringkas kita bisa menghitung simpangan baku dari suatu sampel dengan menggunakan satu dari rumus-rumus berikut.

s=\sqrt{{\frac{{\sum{{{{{\left( {x-\bar{x}} \right)}}^{2}}}}}}{{n-1}}}} atau s=\sqrt{{\frac{{n\sum{{\left( {{{x}^{2}}} \right)-{{{\left( {\sum{x}} \right)}}^{2}}}}}}{{n\left( {n-1} \right)}}}}

Rumus pertama ini adalah rumus yang telah dijelaskan penggunaannya pada langkah 1 sampai langkah 6 di bagian sebelumnya, sedangkan rumus kedua ini sering disebut dengan rumus cepat menghitung simpangan baku karena kita tidak perlu untuk menentukan rata-rata sampel terlebih dahulu. Untuk lebih memahami bagaimana menggunakan kedua rumus tersebut untuk menentukan simpangan baku sampel, perhatikan contoh berikut.

Contoh Soal: Menghitung Simpangan Baku Sampel

Gunakan kedua rumus untuk menentukan simpangan baku dari nilai-nilai sampel 3, 8, dan 13.

Rumus 1 Untuk menggunakan rumus pertama, pertama kita hitung terlebih dahulu rata-rata dari nilai-nilai yang diberikan. Rata-rata dapat ditentukan dengan membagi jumlah semua nilai dengan banyaknya nilai-nilai tersebut.

\bar{x}=\frac{{\sum{x}}}{n}=\frac{{3+8+13}}{3}=\frac{{24}}{3}=8

Selanjutnya kita kurangi masing-masing nilai dengan rata-ratanya. Dengan demikian kita peroleh 3 – 8 = –5, 8 – 8 = 0, dan 13 – 8 = 5. Kuadrat dari masing-masing simpangan tersebut adalah (–5)2 = 25, 02 = 0, dan 52 = 25. Jumlah dari semua nilai kuadrat ini adalah 25 + 0 + 25 = 50. Karena banyaknya nilai dalam sampel adalah n = 3, maka berikutnya kita bagi 50 dengan n – 1 = 2 untuk mendapatkan 50/2 = 25. Dengan demikian simpangan bakunya adalah akar kuadrat dari 25 yang sama dengan 5.

Rumus 2 Untuk menggunakan rumus kedua, kita memerlukan tiga nilai, yaitu n, Σx dan Σx2.

n = 3
Σx = 3 + 8 + 13 = 24
Σx2 = 32 + 82 + 132 = 242

Dengan demikian, simpangan baku sampel yang diberikan dapat ditentukan sebagai berikut.

s=\sqrt{{\frac{{n\sum{{\left( {{{x}^{2}}} \right)-{{{\left( {\sum{x}} \right)}}^{2}}}}}}{{n\left( {n-1} \right)}}}}=\sqrt{{\frac{{3\left( {242} \right)-{{{\left( {24} \right)}}^{2}}}}{{3\left( {3-1} \right)}}}}=5

Bagaimana cara menghitung simpangan baku dari suatu populasi?

Dua rumus yang telah dijelaskan sebelumnya merupakan rumus simpangan baku untuk sampel. Rumus yang sedikit berbeda digunakan untuk menghitung simpangan baku populasi, yang dinotasikan dengan σ (sigma). Rumus simpangan baku populasi diberikan sebagai berikut.

\sigma =\sqrt{{\frac{{\sum{{{{{\left( {x-\mu } \right)}}^{2}}}}}}{N}}}

Berdasarkan rumus tersebut, kita dapat menentukan simpangan baku populasi dengan mengakarkan hasil bagi antara jumlah kuadrat simpangan semua nilai dalam populasi dengan rata-ratanya dan ukuran populasi tersebut.

Mengapa rumus simpangan baku sampel dan populasi berbeda?

Untuk mengetahui mengapa rumus simpangan baku sampel pembaginya adalah n – 1 (tidak seperti pembagi pada rumus simpangan populasi yang sama dengan N), perhatikan ilustrasi berikut. Misalkan kita memiliki populasi yang terdiri dari empat nilai, yaitu 1, 3, 10, dan 14. Nilai simpangan baku populasi ini adalah σ = 5,24.

Asumsikan sampel yang terdiri dari 3 nilai diambil secara acak dari populasi tersebut dengan pengembalian. Dengan demikian kita mendapatkan 43 = 64 kemungkinan sampel. Dari semua kemungkinan tersebut, kita akan mencoba menggunakan rumus simpangan baku dengan pembagi n dan n – 1. Unduhlah tabel di bawah untuk mengetahui simpangan baku dari semua kemungkinan sampelnya.

Unduh lampiran tabel di sini.

Setelah semua simpangan baku dari dua rumus sudah dihitung, selanjutnya kita dapat menghitung rata-rata dari masing-masing simpangan baku tersebut. Nilai rata-rata ini juga sudah tersedia pada tabel di atas. Manakah dari dua rata-rata simpangan baku tersebut yang lebih baik untuk memperkirakan simpangan baku dari populasi σ = 5,24? Jawabannya adalah rumus simpangan baku dengan pembagi n – 1. Itulah mengapa rumus simpangan baku pada sampel memiliki pembagi n – 1. Semoga bermanfaat, yos3prens.

Tentang Yosep Dwi Kristanto

Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran.
Pos ini dipublikasikan di Statistika dan tag , , , , , , , , . Tandai permalink.

Satu Balasan ke Simpangan Baku

  1. Ping balik: Simpangan Baku — Pendidikan Matematika – Judul Situs

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout /  Ubah )

Foto Google

You are commenting using your Google account. Logout /  Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout /  Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout /  Ubah )

Connecting to %s