Koordinat Ruang dan Vektor dalam Ruang

Pada pembahasan ini kita akan berdiskusi mengenai sistem koordinat dalam ruang tiga dimensi dan vektor yang terletak dalam ruang. Sehingga setelah membaca pembahasan ini, diharapkan kita dapat

Vektor dalam Ruang-01

Koordinat dalam Ruang

Mungkin sampai saat ini, kita telah memberikan perhatian utama pada sistem koordinat dua dimensi. Akan tetapi dalam mempelajari kalkulus kita akan memerlukan sistem koordinat tiga dimensi.

Gambar 1

Sebelum memperluas konsep vektor ke dalam tiga dimensi, kita harus mampu untuk mengidentifikasi titik-titik dalam sistem koordinat tiga dimensi. Kita dapat membangun sistem ini dengan membuat sumbu-z yang memotong tegak lurus sumbu-x dan sumbu-z pada titik asal, seperti yang ditunjukkan Gambar 1. Jika kita memasangkannya, sumbu-sumbu tersebut akan membentuk tiga bidang koordinat: bidang-xy, bidang-xz, dan bidang-yz. Ketiga bidang koordinat ini akan memisahkan ruang menjadi delapan oktan. Oktan pertama berisi titik-titik yang semua koordinatnya positif. Dalam sistem tiga dimensi ini, suatu titik P dalam ruang ditentukan dengan tripel berurutan (x, y, z), dimana x, y, dan z dijelaskan sebagai berikut.

  • x = jarak langsung dari bidang-yz ke P
  • y = jarak langsung dari bidang-xz ke P
  • z = jarak langsung dari bidang-xy ke P

Beberapa titik ditunjukkan dalam Gambar 2 berikut.

Gambar 2

Sistem koordinat tiga dimensi dapat berorientasi tangan kanan atau tangan kiri. Untuk menentukan orientasi sistem tersebut, bayangkan kita berdiri pada titik asal, dengan kedua tangan menunjuk ke sumbu-x positif dan sumbu-y positif, dan sumbu-z menunjuk ke atas, seperti yang ditunjukkan Gambar 3. Apakah sistem tersebut berorientasi tangan kanan atau tangan kiri bergantung pada tangan mana yang menunjuk sumbu-x. Pada pembahasan ini, kita akan menggunakan sistem yang berorientasi tangan kanan.

Gambar 3

Banyak rumus-rumus yang diperoleh dari koordinat dua dimensi dapat diperluas ke tiga dimensi. Sebagai contoh, untuk menentukan jarak antara dua titik dalam ruang, kita dapat menggunakan Teorema Pythagoras dua kali, seperti yang ditunjukkan Gambar 4. Dengan melakukan ini, kita akan memperoleh rumus jarak antara dua titik (x1, y1, z1) dan (x2, y2, z2).

Rumus Jarak

Gambar 4

Tentang Yosep Dwi Kristanto

Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran.
Pos ini dipublikasikan di Kalkulus, Kelas XII, Materi SMA, Topik Matematika dan tag , , , , , , , , , , , , , , , . Tandai permalink.

Satu Balasan ke Koordinat Ruang dan Vektor dalam Ruang

  1. Ping balik: Koordinat Ruang dan Vektor dalam Ruang – BERBAGI

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s