Menyelesaikan SPLDV dengan Metode Grafik

Pada pembahasan ini akan dibahas bagaimana cara menyelesaikan SPLDV dengan menggunakan metode grafik. Tetapi, sebelum itu kita harus tahu bentuk grafik dari persamaan linear dua variabel. Bagaimana bentuk grafik dari persamaan linear dua variabel?

Grafik dari persamaan linear dua variabel berbentuk garis lurus, seperti yang ditunjukkan oleh gambar berikut.

Persamaan Linear

Lalu bagaimana cara menggunakan grafik persamaan linear untuk menyelesaikan permasalahan SPLDV? Pada dasarnya, terdapat 4 langkah dalam menyelesaiakan permasalahan SPLDV dengan menggunakan metode grafik. Keempat langkah tersebut adalah,

Langkah 1: Memodelkan informasi yang ada di soal.

Langkah 2: Menentukan dua titik yang dilalui grafik persamaan-persamaan pada SPLDV.

Langkah 3: Menggambar grafik persamaan-persamaan tersebut.

Langkah 4: Menggunakan penyelesaian yang diperoleh untuk menjawab pertanyaan pada soal cerita.

Untuk lebih memahaminya, perhatikan contoh berikut.

Dalam sebuah konser musik, terjual karcis kelas I dan kelas II sebanyak 500 lembar. Harga karcis kelas I adalah Rp 8.000,00, sedangkan harga karcis kelas II adalah Rp 6.000,00. Jika hasil penjualan seluruh karcis adalah Rp 3.250.000,00, tentukan banyak karcis masing-masing kelas I dan kelas II yang terjual.

Langkah pertama adalah mengubah kalimat-kalimat pada soal cerita di atas menjadi model matematika, sehingga membentuk sistem persamaan linear. Misalkan banyak karcis I dan II yang terjual secara berturut-turut adalah x dan y, maka kalimat “Dalam sebuah konser musik, terjual karcis kelas I dan kelas II sebanyak 500 lembar,” dapat dimodelkan menjadi,

Pers 1

Sedangkan kalimat, “Harga karcis kelas I adalah Rp 8.000,00, sedangkan harga karcis kelas II adalah Rp 6.000,00. Jika hasil penjualan seluruh karcis adalah Rp 3.250.000,00,” dapat dimodelkan menjadi,

Pers 2

Sehingga diperoleh SPLDV sebagai berikut.

SPLDV

Langkah kedua, kita cari koordinat dua titik yang dilewati oleh grafik masing-masing persamaan tersebut. Biasanya, dua titik yang dipilih tersebut merupakan titik potong grafik persamaan-persamaan tersebut dengan sumbu-x dan sumbu-y.

Titik Potong Sumbu

Sehingga grafik persamaan x + y = 500 memotong sumbu-x di (500, 0) dan memotong sumbu-y di (0, 500).

Titik Potong Sumbu 2

Sedangkan grafik 8.000x + 6.000y = 3.250.000 memotong sumbu-x di (406 1/4, 0) dan memotong sumbu-y di (0, 541 2/3).

Langkah ketiga, kita gambarkan grafik persamaan-persamaan tersebut pada koordinat Cartesius. Grafik persamaan-persamaan di atas dapat dilukis dengan memplot titik-titik yang telah kita cari pada koordinat Cartesius kemudian hubungkan titik (500, 0) dan (0, 500) untuk mendapatkan grafik x + y = 500, serta titik (406 1/4, 0) dan (0, 541 2/3) untuk mendapatkan grafik 8.000x + 6.000y = 3.250.000.

Metode Grafik

Dari grafik di atas diperoleh bahwa titik potong grafik x + y = 500 dan 8.000x + 6.000y = 3.250.000 adalah (125, 375). Sehingga selesaian dari SPLDV di atas adalah x = 125 dan y = 375.

Langkah keempat, kita gunakan selesaian di atas untuk menjawab pertanyaan pada soal cerita. Karena x dan y secara berturut-turut menyatakan banyak karcis I dan II yang terjual, maka banyaknya karcis kelas I yang terjual adalah 125 lembar dan 375 lembar untuk karcil kelas II. Semoga bermanfaat, yos3prens.

About these ads

Tentang Yosep Kristanto

Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran.
Tulisan ini dipublikasikan di Kelas VIII, Materi SMP dan tag , , , , , . Tandai permalink.

7 Balasan ke Menyelesaikan SPLDV dengan Metode Grafik

  1. Susani berkata:

    Sya suka SPLDV..
    tpii apakah tidak ada contoh lain yang tanpa menggunakan soal cerita?

    Suka

  2. abd hakim mustafa berkata:

    sy sk matimatika

    Suka

  3. Ping balik: Sistem Persamaan Linear Dua Variabel (SPLDV) | Algebra is Fun :)

  4. Ping balik: SPLDV | Matematika Jenius

  5. Ping balik: Menyelesaikan SPLDV dengan Metode Eliminasi | diahsariasih

  6. setitikembun berkata:

    Reblogged this on lembayungsurga and commented:
    MATERI SPLDV KELAS 8

    Suka

  7. Ping balik: Menyelesaikan SPLDV dengan Metode Eliminasi | Pendidikan Matematika

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s