Kesebangunan pada Segitiga Siku-siku

Kesebangunan dapat digunakan untuk menyelesaikan permasalahan yang ada di sekitar kita. Sebagai contoh, kesebangunan dapat digunakan untuk menghitung tinggi suatu benda yang sulit diukur secara langsung. Suatu pohon yang tinggi menjulang memiliki panjang bayangan 37,5 m di suatu pagi dan 12,5 m di suatu sore. Apabila sinar-sinar garis dari puncak pohon yang menuju tanah membentuk sudut siku-siku, dapatkah kamu menghitung tinggi pohon tersebut?

Sebelum menghitung tinggi pohon tersebut, kita pelajari terlebih dahulu mengenai kesebangunan pada segitiga siku-siku. Perhatikan gambar berikut.

Segitiga Siku-siku

Dari gambar tersebut, apakah kamu menduga bahwa segitiga PSR sebangun dengan segitiga RSQ? Dapatkah kamu membuktikannya? Segitiga PSR memang sebangun dengan segitiga RSQ. Berikut pembuktiannya.

Perhatikan bahwa sudut PSR dan sudut RSQ merupakan sudut siku-siku, sehingga besar sudut PSR sama dengan sudut RSQ, yaitu 90°. Selanjutnya, pada segitiga PRQ, besar sudut RPS sama dengan 180° dikurangi jumlah dari besar sudut SQR dan 90°. Demikian juga pada segitiga RSQ, besar sudut QRS sama dengan 180° dikurangi jumlah dari sudut SQR dan 90°.

Persamaan Sudut

Sehingga, besar sudut PRQ sama dengan besar sudut QRS. Karena pada segitiga PSR dan segitiga RSQ terdapat dua sudut yang sama besar, maka kedua segitiga tersebut sebangun. Karena segitiga PSR dan segitiga RSQ merupakan segitiga-segitiga yang sebangun, maka perbandingan dari panjang sisi-sisi yang bersesuaian besarnya sama.

Persamaan Kesebangunan

Selanjutnya, coba buktikan bahwa segitiga PSR sebangun dengan segitiga PRQ dan segitiga RSQ sebangun dengan segitiga PRQ. Dari kesebangunan segitiga-segitiga tersebut, diperoleh beberapa persamaan berikut.

Persamaan Kesebangunan 2

Sehingga, dari segitiga PQR dan ruas garis RS dengan titik S terletak pada sisi PQ sedemikian sehingga ruas garis RS tegak lurus dengan sisi PQ, diperoleh ketiga persamaan berikut.

RS = √(SP ∙ SQ); RP = √(PS ∙ PQ); dan RQ = √(QS ∙ QP)

Kesebangunan Segitiga Siku-siku

Dari persamaan tersebut, kita dapat menghitung tinggi pohon pada permasalahan awal. Tinggi pohon tersebut adalah √(37,5 ∙ 12,5) = 21,65 m. Semoga bermanfaat, yos3prens.

About these ads

Tentang Yosep Kristanto

Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran.
Tulisan ini dipublikasikan di Kelas IX, Materi SMP, Perangkat Pembelajaran dan tag , , , , . Tandai permalink.

2 Balasan ke Kesebangunan pada Segitiga Siku-siku

  1. Puji lestari berkata:

    It’s okey ?

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s